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ESTIMATION OF LATENT GROUP EFFECTS

Abstract

"Conventional methods of multivariate normal analysis do not apply when

the variables of interest are not observed directly, but must be inferred from

fallible or incomplete data. For example, responses to mental test items may

depend upon latent aptitude variables, which modeled in turn as functions of

demographic effects in the population. A method of estimating such effects by

means of marginal maximum likelihood, implemented by means of an EM algorithm,

is proposed. Asymptotic standard errors, likelihood ratio tests of alter-

native models, and computing approximations are provided. The procedures are

illustrated with data for tests from the Armed Services Vocational Aptitude

Battery administered to a national probability sample of American youth.
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ESTIMATION OF LATENT GROUP EFFECTS

I. INTRODUCTION

Consider a number of multivariate normal populations in the random

variable 6, with a common dispersion matrix and with means given by linear

functions of the fixed group-effect parameters r. Consumer attitudes in the

cells of a multi-way demographic design, for example, might be modeled in

terms of only main effects and selected interactions. Maximum likelihood (ML)

estimation of r from samples of e from each population is well known, if

it can be assumed that e values are measured either without error or with

iid normal and unbiased error components (Anderson, 1958).

Less familiar, however, are procedures to be followed when these as-

sumptions are not tenable. If observations are of counts of favorable

responses on an opinion survey, for example, the conditional distribution of

observed score cannot be independent of expected score under any model with

unbiased measurement errors (Lord and Novick, 1968:509). Or, as a second

example, observed data may consist of subjects' responses to test items which

depend stochastically on latent aptitude parameters through a quantal response

model. More generally, we wish to consider situations in which it is not

values of 0 that are observed, but values of a secondary random variable

whose distributions depend on e through known density functions p(xIe).

This paper, then, presents a marginal maximum likelihood (MML) solu-

tion for r from x, alonq the lines employed by Bock and Aitkin (1981) to

estimate parameters in item response models. The results extend those of

Andersen and Madsen (1977) and Sanathanan and Blumenthal (1978), who estimate

the mean and variance of a univariate normal latent distribution when p(xI8)

is the one-parameter loqistic (Rasch) item response model, and of Andersen

(1980), who tests the equality of latent means and variances in the same

context.
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We begin in Section 2 with a brief review of ML estimation of r

and , the common dispersion matrix, when values of 0 are observed, or, in

the terminology of Dempster, Laird, and Rubin (1977), the "complete data"

problem. Section 3 considers the case in which values of x are observed

instead, or the "incomplete data" problem. The resulting likelihood equations

can be solved by means of cycles of an EM algorithm, which, since the unknown

population density belongs to the exponential family, is guaranteed to con-

verge to a local maximum. Computing approximations are presented in Section

4, asymptotic standard errors in Section 5, and likelihood ratio tests of fit

in Section 6. Section 7 illustrates the procedures with data from the Profile

of American Youth survey (U.S. Department of Defense, 1982).

2. THE "COMPLETE DATA" SOLUTION

We assume K homoscedastic p-variate normal distributions in the

random variable e, with common dispersion matrix Z and means Yk given as

linear functions of M fixed group-effect parameters Xm; that is,

or, more compactly,

M T r
Kxp KXM MXp

where T is a known basis matrix, the k'th row of which specifies the

dependence of 4 on the parameters r.

Suppose that samples of 0 of size Nk have been obtained from the

K populations. Let N - Nk and let Ilk be indicators that take the
k

value I when observation i is associated with population k and 0 when it
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is not. The likelihood of the sample is then given as

L = U f[gk (0)jik

ik
where

g (e exp[-'/2 e. - rt ) -'(e. -tk)]
k( 2) P/2 ~~ ~t

For reference in a following section, we digress briefly to demon-

strate that with population membership known, this density belongs to the

exponential family. Considering its parameters to be r and Z-1 for

convenience, we must show that it can be written in the form

f(e) = exptL Aw r, ,-1)B (6) + C(6) + D(r, E- 1}0
w

where the summation runs over the unique elements of r and Z_. Letting

(&v) represent Z- , this can be done by taking

A (,-)= 
u v  if u v

uva 2 u v  if u v

and

uv u v
a

and for each element ysu of 1, taking

A (r. E-1) , [ uv
Ysu v m
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and

B (0Y Iktkstkm
7su k m

Finally,

C(e) - 0

and

D(r, E- ) = log -1 [IEI 12( 2 -)p/2]

Continuing to the main argument, we obtain the log likelihood as

log L = IiklOg gk(ei)

ik

(2.1)
= C - N/2 logj 1- 1/2 [ 11 1i.ei r'k)- E-(ei - r-tk)

.. i k ~ iki ~1~ -ik

where C does not depend on Z or J.

ML estimation proceeds by differentiating (2.1) with respect to r

and E, then equating the results to zero to obtain the likelihood equations:

3 log L -1(ar Iik i-Ft) =0
- i k

or

. Iikei k = [ Iik!'tk-t ,ik i k

then

SN, jj- ; N kl'tkt. (2.2)
k

where

*k iiki (2.3)
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Rewriting (2.2) more compactly, we obtain the likelihood equation r as

*'D T 'OTr

where

D =diag(N , . . ., N)

Assuming T to be of full column rank M (a condition which if not satisfied

initially can always be met by reparameterizing in terms of contrast among the

original x's), we obtain

r = TDT) 1TD1 . (2.4)

Likelihood equations for Z are similarly obtained:

8 logL -1 -1
TV N/2(2 -diag

fE-1(6 rke, tj z-1+ 1/2 l ik{  - i" tk€i- tk) -
i k

diag(t-C(e. - rr-)(e _ rtki -

equating to zero and simplifying yields

diag E - 2 Z = diagS- 2S (2.5)

where

s N j- [ I ik(Oi - !')(6i - rt.,)" • (2.6)
ik

After replacing r by r, we see from the form of (2.5) that

E - S (2.7)

It is well known that r and Z are the unique zeros of the likelihood

equations, and that they maximize the log likelihood function (2.1).
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Note that (2.4) and (2.7) imply that M and S are jointly sufficient

statiqtics for r and Z. In anticipation of the incomplete data problem, it

is instructive to recognize their computation in (2.3) and (2.6) as standard

formulas for means and dispersions, Stieltjes integrals over not the unknown

true density but over an approximation of it, namely, the discrete

distribution given by a finite sample of points from the distribution of

interest.

3. THE "INCOMPLETE DATA" SOLUTION

Suppose that rather than values of e, we observe values of x which

depend on 6 through p(xIe), densities of known form which may vary from

one observation to the next. For example, x you may be a vector of discrete

values depending on the continuous latent variable 0 through a quantal

response model; or, as a second example, x may be equal to 6 plus a random

error component, the distributions of which are known but need not be either

iid nor normally distributed. Under these assumptions, the marginal likeli-

hood of response x. obtained from population k is given as

h p(x.£ g ~E, ( )d6] (3.1)
k 6

For notational convenience, we write qimply h(xi) and gk(B) hereafter, the

dependence on r and Z implicit.

From (3.1), the log marginal likelihood of samples of x of size

Nk is given by

log L* = log h(x.)
i

= [ Ilog I P(xi12)g (B)d@ (3.2)
ik 8
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The derivative of log L* with respect to r is then obtained as

a log L* 3 log h (x)
a r a r

if 

k

ikh- (-i -. 7 -.d2

I h- I~(x) f ~ (0 Z - £k~ *~ td (3.3)
ik 0

Equating to zero yields

-Ii h - 1 (x-) f P(xil-8)g (6)-sdetk

ik ik k~ ;"i k 6

= Iikh-1(xi) f P(xi 16)gk(k)der',k4t
i k

then

S"N ( kr-k 3.4)
k k

where

f I - PkI (e ))d8 (3.5)
e k

with

Pk-09)= lip~Oi1

= N ' I I ikh-(3)P(xil)g k T (3.6)
1

being the posterior density of 6 in population k given r, Z, and the

observed data X) via Bayes theorem. Rewriting (3.4) more compactly,

T'DM* = T'DTr

I
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from which

r = (")T'DM* (3.7)

Similarly, differentiating (3.2) with respect to Z yields

alog L* a log h(x.)

-TY

=2Ii {/ 2 2 diag + +1/ 2 h- (x) f P(x i2)g (6)
i k 0

(3.8)

x {2 Z-(e - rt,)e - r-tk)-

- diag[E 1(e - £' )(e - £-k)' E- }]de}

Equating to zero then simplifying leads to

diag 2 E = diag S* 2S*

where
= [ f (e - r-t)(o - rtk)pk(8lEi))de (3.9)

k 
1

Again it is clear that
-=S*

Like (2.3) and (2.6), (3.5) and (3.9) are standard formulas for

computing means and dispersions from an approximation of an unknown density.

Now the approximation is not based on a discrete set of sample points from the

distribution but on an average over observations of the posterior density of

8 given each observation. These posterior densities, however, are computed

via Bayes theorem in (3.6) with the true densities assumed known. Thus, the

likelihood equations (3.7) and (3.10) constitute a system of implicit

equations in r and E, since they are defined in terms

of M* and S* which depend in turn on r and E through h and gk*
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One approach to solving (3.7) and (3.10), thereby obtaining zeros of

the log likelihood, is the so-called method of successive approximations.

That is, M* and S* are computed through (3.5) and (3.9) with provisional

tt ~t+1 ~ t+1estimates r and E ; improved estimates + and Z are then

obtained by evaluating (3.7) and (3.10) with respect to these new values.

This procedure will be recognized as an application of the EM algorithm, as

described by Dempster, Laird, and Rubin (1977), who demonstrated convergence

to a maximum of the likelihood function when the complete data density is a

member of the exponential family, as it is in the problem at hand. The

notoriously slow convergence of the EM algorithm, which worsens as the den-

sities p(x1e) become more diffuse, can be largely ameliorated by the use of

acceleration techniques such as those described by Ramsey (1975).

4. COMPUTING APPROXIMATIONS

Because closed-form expressions for the integrals in (3.1), (3.5), and

(3.9) are not generally available, numerical approximations are required in

applying the foregoing solution. Three approaches are outlined in this

section: Gauss-Hermite quadrature, quadrature over fixed points, and Monte

Carlo integration.

For accuracy and stability, Gauss-Hermite quadrature is the preferred

method of numerical integration over the normal distribution when p is

small. Stroud and Sechrest (1966) provide tables of optimal points and

weights for the univariate standard normal density, which will be denoted (Zq)

and (W(Zq)), for q = 1, . . ., Q. A grid of points for the p-variate

standard normal is obtained as the Cartesian product of p univariate sets of

points, with weights equal to the products of weights associated with each

element in the vector defining a grid point. That is, a typical point in the
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gridyill take the form

Z= (Z , " " *, Z )
qqp

and have an associated weight of

p
W(Z) = 1 W(Zqt

-q t=1

The integrations in (3.1), (3.5), and (3.9) take place over a general

p-variate normal distribution, necessitating a change of variables of integra-

tion in order for Gauss-Hermite quadrature to be employed. We illustrate with

(3.1). Let zk = - )V, where W = Z is the Cholesky factorization

of E (implying that 1)l = W /2). Then

h(x H If P(xi )- I /V exp[-1/2 (e- rtk)I E-1 (a - r-ti)]d } k

k 6 (px (z )p/ -2 -i k

= if P(Xiek( Vk /2 exp(-Z k/2)lVfdZk}

k zk 
(2w)

p / 2

= iT f p(xilek(zk))(2r)- p/2 exp(zz/2)dzkik

k z k

where

& (z) = vz + r'tk

Then

h* nT {1 1P(xiIjqk)W(qk 0'i
ik q

where

X k- 0(Z ) and W(X k) W(Z

Computing approximations of and S* are obtained similarly as

* N-1 [ Iikh- ) [ X qp(x.IX k)W(X k) = X p*q (4.1)k .i - q,-qk ,-z -qk ,qk q qk qk
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where

= N I h- (x.)p(xIX )W(X
qk K . ik -i -- qk -qk

and

* (x k - r-t )(x - rtk),p*(42kq _q -qk - q(

The similarity of the computing approximations (4.1) and (4.2) to the

complete data solution given as (2.3) and (2.6) are immediately apparent;

means and dispersions are again computed with respect to a discrete approxima-

tion of the distribution of interest. This time, however, the discrete

approximation is based not on sample points from that distribution but on

posterior estimates of its density at selected quadrature points, given the

observed data (x). In contrast to (2.3) and (2.6), (4.1) and (4.2) constitute

a system of implicit equations because of the dependence of the weights P*k

on the unknown parameters of the distribution.

An alternative approximation that can offer considerable computational

advantage is quadrature over a fixed grid of points. Whereas Gauss-Hermite

quadrature computes points anew each cycle in accordance with provisional

estimates of r and E, it is possible to retain the same grid of points for

all cycles and thereby avoid computing p(xlxk) every cycle. A grid of

points X is selected a priori to span a region where the preponderance of-q

the population distributions is believed to lie. New weights are computed in

each cycle from provisional estimates of r and Z as follows:

Wk () = exp[- 1/2 (X - t) o r-1 (xq -£tk)] .

The computing aproximations (4.1) and (4.2) remain unchanged except for the

substutitions of X for and Wk(X ) for Wqk). When the grid is

well chosen, estimates of Z and F will agree well with those computed via

'' . .. I I . . . . . .. .
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Gauss-Hermite quadrature. When the points are poorly chosen, however, loss of

accuracy and/or stability can result.

A second alternative that can prove useful when large p renders

quadrature over a grid cumbersome is Monte Carlo inteqration. In each

cycle, Q random points X qk  are generated for each population k in

accordance with provisional estimates of r and Z. The computing formulas

(4.1) and (4.2) remain unchanged except that

W(X) = 1/0 k 1, .... K

5. ASYMPTOTIC STANDARD ERRORS

Following Bock and Lieberman (1970), we may approximate the inverse of

the asymptotic covariance matrix of the estimators r and £ by

a log h(xj) alog x
H=

where represents the Mp elements of r and the p(p+l)/2 nonredundant

elements of E written as a single vector. Large sample standard errors are

obtained as the square roots of the diagonal elements of H- 1. Expressions

necessary for the evaluation of H are found in (3.3) and (3.8). Using the

univariate case as an illustration, the required gradient vectors, gramian

products of which are summed over observations to produce H, are shown below:

= log h( IIikh-l(i ) f p(i) 2 (8 - -rtk)tkmde

Ym k 8 
n

-2 I ik h 1  
P(x i Ix k)W(Xk )(X9k - r'-tk )m

k k

2 -2 1 ik i P(Xqk Ii)(Xqk - £t-)tkm
k q
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and

3 log h(x. = _I2+14 ik]h-1(xi) f p(xije)g,( e)(e - rt k)(e - 'tk)'de
a2  22 + 4 ik i k -

2a 20 k 6

- + ik p(Xqkl-i)(Xqk - tk )(Xqk Z'k •
2c2  2a k q

6. TESTS OF FIT

Consider two competing models for a given data set, with Model I

nested within Model 2. In large samples, the fit of the two models can be

compared by means of the statistic

X - 2 log(L*/L*) (6.1)

which, when Model 1 is correct, follows a chi-square distribution with degrees

of freedom equal to the number of additional parameters in Model 2.

When the number of potential responses x is small compared to the

sample size, it is possible to compare the fit of a given model to a general

multinominal alternative. First the universe of potential responses x L is

partitioned into mutually exclusive and exhaustive classes such that the

potential responses of a given observation constitute exactly one class. If a

test with several parallel forms is administered, for example, each class of

responses will consist of all possible response vectors to the items in a

given test form. Let r(x k) be the count of response xL observed in

population k, and let N(x k ) be the total number of responses from the

same class as x that are observed in population k. Then the statistic

X2 - -2 r( k )lOg[N(x k h( Ik)/r{x k) (6.2)
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(with terms for which r(xk) = 0 set to zero] will follow a chi-square

distribution in large samples when the model is correct, with degrees of

freedom equal to the numler of non-zero r(x k) terms minus the number of

parameters estimated in the model minus K. It will be noted that the

difference between the values of (6.2) for two nested models takes the same

value and has the same degrees of freedom as a direct comparison via (6.1).

Following Andersen (1980), we may test the equality of dispersion

matrices across groups in a two-step procedure. First, means and dispersion

matrices are estimated in all groups separately. The product of the

likelihoods resulting from these separate analyses is accumulated. Second,

separate means and a common dispersion matrix are estimated by employing an

identity matrix as the basis matrix T and proceding as described in Section

3. The resulting likelihood may be compared with the first via (6.2) to

obtain a large-sample chi-square test of the equality of dispersion matrices

over groups, with the number of degrees of freedom equal to (K - 1)p(p + 1)/2.

7. A NUMERICAL EXAMPLE

Item response models in psychometrics express the probability of a

given response to a test item as a function of a subject's latent ability

parameter e and one or more parameters that characterize the regression of

the item response on ability. The three-parameter logistic item response

model (Birnbaum, 1968) for dichotomous items, for example, gives the

probability of a correct response to item j from subject i as

P(xij l i1 i , a., bit cj)

SPij

exp[ I(.7a.( - b)

j i (

J + . ... ,n pln7 n1 (0 b -- )J ..
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and the probability of an incorrect response as

P(xij = Oli, a., bj, c.) = 1 - Pij (7.1b)

where xij denotes the response, 1 if correct and 0 if not, and where 8. is

the ability of subject i and aj, bj, and cj are parameters that

characterize item j: aj, the slope parameter, reflects the reliability of

the item; bi, the threshold, reflects its difficulty; and cj, the lower

asymptote, reflects the minimal probability of a correct response from even

subjects with extremely low abilities. Under the usual assumption of local or

conditional independence, the probability of a pattern of responses from

subject i to a number of items is given by the product over items of

expression like (7.1):

P(x i6) = H P(Xi jei, aj, b., cj) . (7.2)
J

In most applications, item response models are used to estimate the latent

abilities of individuals. With values of item parameters assumed known

(generally estimated from a large sample of subjects), one may obtain a

maximum likelihood estimate of 8 with respect to a given response vector by

maximizing (7.2) as a function of 8, and a large-sample standard error by

taking the negative reciprocal of the second derivative of the natural

logarithm of (7.2) evaluated at the mle 8.

There are several reasons not to approximate the distribution of 8

in a population from the distribution of 8, or to carry out ANOVA procedures

on values of 8 to estimate group effects on means of 8 in various subpop-

ulations. First, values of 8 are estimated with varying precision, thereby

violating the assumptions upon which standard ANOVA procedures are based.

Second, estimation of 8 from certain response patterns is problematic;

patterns with all correct or all incorrect responses, along with most patterns



-16-

with total scores below chance level (the sum of the c.'s over the items a

subject has been presented) yield infinite mle's. Deleting the data of sub-

jects with such patterns biases estimates of the population means and vari-

ances, while assigning them finite values either arbitrarily or by incor-

porating prior information introduces biases into the estimation of the

O's themselves. Third, stable estimation of individuals' O's requires at

least 15 or 20 responses per subject, thereby proscribing the use of more

efficient sampling designs that would be preferred when only population-level

parameters are of interest. The methods introduced in the preceding sections

suffer none of these deficiencies.

As an example, we consider data from the Profile of American Youth, a

survey of the aptitudes of a sample of the population of Americans aged 16

through 23 in July 1980 (U.S. Department of Defense, 1982). Table 1 presents

counts of the sixteen possible response patterns observed to four items from

the Arithmetic Reasoning test of the Armed Services vocational Aptitude

Battery (ASVAB), Form 8A, as observed in samples of white males and females

and black males and females. The parameters of these items under the three-

parameter logistic item response model, shown in Table 2, were estimated from

a sample of 1,178 cases from the 11,787 available using the BILOG computer

program (Mislevy and Bock, 1982).

Tables 3 and 4 presents the results of fitting a series of nested

models to the data of Table 1. Examination of the differences between

likelihood ratio chi-squares against the general multinominal alternative

suggests, to begin with, that within-group variation may not be homogeneous.

Continuing the example for purposes of illustration, we find strong evidence

for a race effect and, to a lesser extent, for sex and interaction effects.

II III| • , !I _ ., _
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The males' mean exceeds that of the females for whites, but the females' mean

appears to equal or exceed that of the males for blacks.

INSERT TABLES 1-4
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TABLE 1

COUNTS OF OBSERVED RESPONSE PATTERNS

ITEM

RESPONSE WHITE WHITE BLACK BLACK

1 2 3 4 MALES FEMALES MALES FEMALES

0 0 0 0 23 20 27 29

0 0 0 1 5 8 5 8

0 0 1 0 12 14 15 7

0 0 1 1 2 2 3 3

0 1 0 0 16 20 16 14

0 1 0 1 3 5 5 5

0 1 1 0 6 11 4 6

0 1 11 1 7 3 0

1 0 0 0 22 23 15 14

1 0 0 1 6 7 10 10

1 0 1 1 19 6 1 2

1 1 0 0 21 18 7 19

1 1 0 1 11 15 9 5

1 1 1 0 23 20 10 8

1 1 1 1 86 42 2 4

TOTAL 264 227 141 147

TABLE 2

ITEM PARAMETERS

ITEM a b c

1 1.27 -. 13 .22

2 1.45 .42 .34

3 2.49 .71 .31

4 2.27 .62 .20
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TABLE 3

PARAMETER ESTIMATES AND FIT STATISTICS

EFFECTS GRAND CHI-

IN MODEL MEAN RACE SEX INTERACTION VARIANCE SQUARE DF

GRAND MEAN .02 (.05) ...... .85 (.12) 223.77 57

GRAND MEAN, SEX .02 (.05) -- .29 (.09) -- .83 (.12) 213.31 56

GRAND MEAN, RACE -. 11 (.06) .92 (.11) -- .66 (.11) 124.14 56

GRAND MEAN,

RACE, SEX -. 11 (.06) .91 (.11) .24 (.09) .65 (.10) 115.92 55

GRAND MEAN,

RACE, SEX,

INTERACTION -. 11 (.06) .90 (.11) .13 (.11) .42 (.21) .65 (.10) 111.12 54

UNCONSTRAINED MEANS,
UNCONSTRAINED VARIANCES (VARIANCES = 1.06, .63, .39, .27) 100.57 51

TABLE 4

FITTED MEANS

EFFECTS WHITE WHITE BLACK BLACK
IN MODEL MALES FEMALES MALES FEMALES

GRAND MEAN .02 .02 .02 .02

GRAND MEAN,
SEX .16 -. 13 .16 -. 13

GRAND MEAN,
RACE .35 .35 -. 57 -.57

GRAND MEAN,
RACE, SEX .47 .22 -.44 -.69

GRAND MEAN,
RACE, SEX,
INTERACTION .51 .16 -.60 -. 52

UNCONSTRAINED MEANS,
UNCONSTRAINED
VARIANCES .49 .17 -. 46 -. 37
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